459 research outputs found

    Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Full text link
    Greenhouse gas (GHG) additions to Earth’s atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near‐surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short‐lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.Key PointsIncreased GHG concentrations in polar inversion layers cause negative top of atmosphere instantaneous and effective radiative forcingPolar and global surface temperatures warm despite this negative radiative forcingSurface warming and tropospheric cooling result from high stability and increased surface downwelling longwave fluxPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142965/1/grl56994_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142965/2/grl56994.pd

    Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM

    Get PDF
    Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB) on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present a new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyse surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP) and the Eemian (126 kyr BP). While being limited by the low resolution of the general circulation model (GCM), present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB decreases largely, and melting affects areas in which the ice sheet surface is today at high altitude, including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree-day (PDD) parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. For the Eemian climate, our model simulations using interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover lead to significantly higher SMB in southern Greenland compared to simulations forced with climatological monthly means

    A New Process-Based Soil Methane Scheme:Evaluation Over Arctic Field Sites With the ISBA Land Surface Model

    Get PDF
    Permafrost soils and arctic wetlands methane emissions represent an important challenge for modeling the future climate. Here we present a process-based model designed to correctly represent the main thermal, hydrological, and biogeochemical processes related to these emissions for general land surface modeling. We propose a new multilayer soil carbon and gas module within the Interaction Soil-Biosphere-Atmosphere (ISBA) land-surface model (LSM). This module represents carbon pools, vertical carbon dynamics, and both oxic and anoxic organic matter decomposition. It also represents the soil gas processes for CH4, CO2, and O2 through the soil column. We base CH4 production and oxydation on an O2 control instead of the classical water table level strata approach used in state-of-the-art soil CH4 models. We propose a new parametrization of CH4 oxydation using recent field experiments and use an explicit O2 limitation for soil carbon decomposition. Soil gas transport is computed explicitly, using a revisited formulation of plant-mediated transport, a new representation of gas bulk diffusivity in porous media closer to experimental observations, and an innovative advection term for ebullition. We evaluate this advanced model on three climatically distinct sites : two in Greenland (Nuuk and Zackenberg) and one in Siberia (Chokurdakh). The model realistically reproduces methane and carbon dioxide emissions from both permafrosted and nonpermafrosted sites. The evolution and vertical characteristics of the underground processes leading to these fluxes are consistent with current knowledge. Results also show that physics is the main driver of methane fluxes, and the main source of variability appears to be the water table depth

    Assessing bias corrections of oceanic surface conditions for atmospheric models

    Get PDF
    Future sea surface temperature and sea-ice concentration from coupled ocean–atmosphere general circulation models such as those from the CMIP5 experiment are often used as boundary forcings for the downscaling of future climate experiments. Yet, these models show some considerable biases when compared to the observations over present climate. In this paper, existing methods such as an absolute anomaly method and a quantile–quantile method for sea surface temperature (SST) as well as a look-up table and a relative anomaly method for sea-ice concentration (SIC) are presented. For SIC, we also propose a new analogue method. Each method is objectively evaluated with a perfect model test using CMIP5 model experiments and some real-case applications using observations. We find that with respect to other previously existing methods, the analogue method is a substantial improvement for the bias correction of future SIC. Consistency between the constructed SST and SIC fields is an important constraint to consider, as is consistency between the prescribed sea-ice concentration and thickness; we show that the latter can be ensured by using a simple parameterisation of sea-ice thickness as a function of instantaneous and annual minimum SIC.</p

    Sensitivity of a Greenland ice sheet model to atmospheric forcing fields

    Get PDF
    International audiencePredicting the climate for the future and how it will impact ice sheet evolution requires coupling ice sheet models with climate models. However, before we attempt to develop a realistic coupled setup, we propose, in this study, to first analyse the impact of a model simulated climate on an ice sheet. We undertake this exercise for a set of regional and global climate models. Modelled near surface air temperature and precipitation are provided as upper boundary conditions to the GRISLI (GRenoble Ice Shelf and Land Ice model) hybrid ice sheet model (ISM) in its Greenland configuration. After 20 kyrs of simulation, the resulting ice sheets highlight the differences between the climate models. While modelled ice sheet sizes are generally comparable to the observed one, there are considerable deviations among the ice sheets on regional scales. These deviations can be explained by biases in temperature and precipitation near the coast. This is especially true in the case of global models. But the deviations between the climate models are also due to the differences in the atmospheric general circulation. To account for these differences in the context of coupling ice sheet models with climate models, we conclude that appropriate downscaling methods will be needed. In some cases, systematic corrections of the climatic variables at the interface may be required to obtain realistic results for the Greenland ice sheet (GIS)

    Numerical optimization of amplitude-modulated pulses in microwave-driven entanglement generation

    Get PDF
    Microwave control of trapped ions can provide an implementation of high-fidelity two-qubit gates free from errors induced by photon scattering. Furthermore, microwave conductors may be embedded into a scalable trap structure, providing the chip-level integration of control that is desirable for scaling. Recent developments have demonstrated how amplitude modulation of the gate drive can permit a two-qubit entangling operation to become robust against motional mode noise and other experimental imperfections. Here, we discuss a method for the numerical optimization of the microwave pulse envelope to produce gate pulses with improved resilience, faster operation and higher energy efficiency

    Oceanic forcing of Antarctic climate change: a study using a stretched-grid atmospheric general circulation model

    Get PDF
    A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea surface conditions, while a set of five simulations for the end of the twenty-first century (2070-99) under the Special Report on Emissions Scenarios (SRES) A1B scenario uses sea surface condition anomalies from selected coupled ocean atmosphere climate models from phase 3 of the Coupled Model Intercomparison Project (CMIP3). Analysis of the results shows that the prescribed sea surface condition anomalies have a very strong influence on the simulated climate change on the Antarctic continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations. Complementary simulations with idealized forcings confirm these results. An analysis of circulation changes using self-organizing maps shows that the simulated climate change on regional scales is not principally caused by shifts of the frequencies of the dominant circulation patterns, except for precipitation changes in some coastal regions. The study illustrates that in some respects the use of bias-corrected sea surface boundary conditions in climate projections with a variable-resolution atmospheric general circulation model has some distinct advantages over the use of limited-area atmospheric circulation models directly forced by generally biased coupled climate model output

    Implementing northern peatlands in a global land surface model: description and evaluation in the ORCHIDEE high-latitude version model (ORC-HL-PEAT)

    Get PDF
    Widely present in boreal regions, peatlands contain large carbon stocks because of their hydrologic properties and high water content, which makes primary productivity exceed decomposition rates. We have enhanced the global land surface model ORCHIDEE by introducing a hydrological representation of northern peatlands. These peatlands are represented as a new plant functional type (PFT) in the model, with specific hydrological properties for peat soil. In this paper, we focus on the representation of the hydrology of northern peatlands and on the evaluation of the hydrological impact of this implementation. A prescribed map based on the inventory of Yu et al. (2010) defines peatlands as a fraction of a grid cell represented as a PFT comparable to C3 grasses, with adaptations to reproduce shallow roots and higher photosynthesis stress. The treatment of peatland hydrology differs from that of other vegetation types by the fact that runoff from other soil types is partially directed towards the peatlands (instead of directly to the river network). The evaluation of this implementation was carried out at different spatial and temporal scales, from site evaluation to larger scales such as the watershed scale and the scale of all northern latitudes. The simulated net ecosystem exchanges agree with observations from three FLUXNET sites. Water table positions were generally close to observations, with some exceptions in winter. Compared to other soils, the simulated peat soils have a reduced seasonal variability in water storage. The seasonal cycle of the simulated extent of inundated peatlands is compared to flooded area as estimated from satellite observations. The model is able to represent more than 89.5&thinsp;% of the flooded areas located in peatland areas, where the modelled extent of inundated peatlands reaches 0.83×106&thinsp;km2. However, the extent of peatlands in northern latitudes is too small to substantially impact the large-scale terrestrial water storage north of 45°&thinsp;N. Therefore, the inclusion of peatlands has a weak impact on the simulated river discharge rates in boreal regions.</p
    • 

    corecore